PRED treatment mediated stable and efficient water oxidation performance of the Fe2O3 nano-coral structure.
نویسندگان
چکیده
Herein, we demonstrate that an electrochemical surface treatment of Fe foil with simple pulse reverse electrodeposition (PRED) prior to thermal oxidation can substantially enhance the photoelectrochemical (PEC) stability and water splitting performance of Fe2O3/Fe photoanodes. Comprehensive structural (XRD, FESEM, and HRTEM), compositional (XPS depth profiling), and electrochemical (EIS and Mott-Schottky) analyses were performed to understand the effect of PRED treatment on the PEC performance of fabricated photoanodes. It is revealed that air-exposed Fe foil is prone to formation of a loosely bound surface oxide layer that, upon annealing at 800 °C, results in an unstable Fe2O3 nano-flake (2-3 μm long) morphology. In contrast, when such Fe foil is pre-treated with PRED to etch the loosely bound oxide layer, adherent inverse-opal-like nano-coral structures (60-100 nm thin) are formed. In addition to stability improvement, PRED-treatment also assists in exposing the photocatalytically active high index [104] facet sites of hematite. Thin hematite nano-coral structures with high index [104] facet sites significantly improved the separation of photo-generated charge carriers and oxygen evolution kinetics, resulting in performance enhancement with excellent photocurrent stability for extended duration in a 1 M NaOH solution under one sun illumination. The net photocurrent density for nano-coral morphology was 0.813 mA cm(-2) at 1.23 V vs. RHE, which is the highest reported value for pristine hematite photoanodes fabricated from Fe foil.
منابع مشابه
CdS Nanoparticle-Modified α-Fe2O3/TiO2 Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation
In this work, we demonstrate a facile successive ionic layer adsorption and reaction process accompanied by hydrothermal method to synthesize CdS nanoparticle-modified α-Fe2O3/TiO2 nanorod array for efficient photoelectrochemical (PEC) water oxidation. By integrating CdS/α-Fe2O3/TiO2 ternary system, light absorption ability of the photoanode can be effectively improved with an obviously broaden...
متن کاملA Synergistic Effect of Surfactant and ZrO2 Underlayer on Photocurrent Enhancement and Cathodic Shift of Nanoporous Fe2O3 Photoanode
Augmenting the donor density and nanostructure engineering are the crucial points to improve solar water oxidation performance of hematite (α-Fe2O3). This work addresses the sluggish water oxidation reaction associated with hematite photoanode by tweaking its internal porosity. The porous hematite photoanodes are fabricated by a novel synthetic strategy via pulse reverse electrodeposition (PRED...
متن کاملHexagonal nanoplates of NiO/CoO/Fe2O3 composite acting as an efficient photocatalytic and electrocatalytic water oxidation catalyst.
A unique hexagonal sheet-shaped NiO/CoO/Fe2O3 composite with irregularly shaped nanoparticles was fabricated for the first time through a simple co-precipitation and hydrothermal method. The NiO/CoO/Fe2O3 composite was characterized by numerous techniques (TEM, HRTEM, PXRD, EDX, ICP-AES, BET, and XPS) to confirm its structure and composition. This structure of the NiO/CoO/Fe2O3 composite may en...
متن کاملEnhanced Oxidation of Azo Dye Using Ag-SiO2 Nanoparticle and Peroxydisulfate and Kinetic Study
Present work investigates the capability of oxidative treatment process in the presence of nano silver doped on silicate particles for decolorization of a widely used azo dye, C.I. Direct Blue 129 (DB129) in water samples. Solutions with initial concentration of 20 mgL-1 of dye, within the range of generic concentration in textile wastewaters, were treated under ambient conditions of initial pH...
متن کاملApplication of copper oxide nanoparticles modified glassy carbon electrode for electrocatalytic oxidation of methanol
Copper nanoparticles were fabricated by electro-reduction of CuSO4solution in the presence of cetyltrimethylammonium bromide (CTAB) cationic surfactant as an additive through potentiostatic method. The prepared copper nanoparticles were characterized by scanning electron microscopy (SEM) and electrochemical methods. The SEM images reveal that the nanoparticles with diameters at about 70 n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 36 شماره
صفحات -
تاریخ انتشار 2015